
Material suplementario

Dima, Jimena Berndette; Ferrari, Mariano; Fiedorowicz Kowal, Martina; Mandelman, Ivan.

Dispersión de aditivos en alimentos: un modelo de convección - difusión resuelto

por diferencias finitas
keyboard_arrow_down

Se presentan en el material suplementario las funciones programadas en Python para resolver el modelo de convección-difusión propuesto

en tres geometrías regulares.

Se presentan además las funciones utilizadas para graficar los perfiles de concentración y la concentración total en cada caso.

Sistemas adimencionaleskeyboard_arrow_down

Lamina planakeyboard_arrow_down

=us urr

= 0ur

= α(1 − u)ur

u = 0

 para r ∈ (0, 1); s > 0

 para r = 0; s > 0

 para r = 1; s > 0

 para r ∈ (0, 1); s = 0

Concentración total en variable adimensional:

(s) = u(r, s) dr.uT ∫
1

0

Cilindro alargadokeyboard_arrow_down

= +us
1

r
ur urr

= α(1 − u)ur

u = 0

 para r ∈ (0, 1); s > 0

 para r = 1; s > 0

 para r ∈ (0, 1); s = 0

Concentración total en variable adimensional:

(s) = 2 u(r, s)r dr.uT ∫
1

0

Esferakeyboard_arrow_down

= +us
2

r
ur urr

= α(1 − u)ur

u = 0

 para r ∈ (0, 1); s > 0

 para r = 1; s > 0

 para r ∈ (0, 1); s = 0

Concentración total en variable adimensional:

(s) = 3 u(r, s) dr.uT ∫
1

0
r

2

Funciones que resuelven los sistemas anteriores aproximando y keyboard_arrow_down u uT

import numpy as np
import matplotlib.pyplot as plt

Lamina plana
def calculate_u_cart(alpha, s_max, N_r, N_s):
 """
 Resuelve el sistema correspondiente a la lámina plana por un método de diferencias finitas.

 Args:
 alpha: parámetro adimensional del modelo
 s_max: valor máximo adoptado para la variable s
 N_r: número de intervalos en la discretización equiespaciada de la variable r
 N_s: número de intervalos en la discretización equiespaciada de la variable s

 Return: una matriz N_r por N_s que aproxima la solución en la discretización utilizada
 """
 r_values = np.linspace(0, 1, N_r) # Discretización de r
 r_values = r_values[1:]
 N_r = N_r - 1
 s_values = np.linspace(0, s_max, N_s) # Discretización de s
 dr = r_values[1] - r_values[0] # Paso de r
 ds = s_values[1] - s_values[0] # Paso de s
 delta = ds / dr ** 2
 A = np.eye(N_r)

 for i in range(1, N_r - 1):
 A[i, i - 1 : i + 2] = [-delta, 1 + 2 * delta, -delta]

 u_old = np.zeros(N_r)
 u_old[-1] = dr * alpha / (1 + dr * alpha)
 u = [u_old.copy()]

 for _ in range(1, N_s):
 u_new = np.linalg.solve(A, u_old)
 u_new[0] = u_new[1] # Condición de frontera en r = 0
 u_new[-1] = (u_new[-2] + dr * alpha)/(1+dr*alpha) # Condición de frontera en r = 1
 u.append(u_new.copy())
 u_old = u_new

 return np.array(u).T

Concentración total en Lamina plana
def calculate_u_cart_T(u):
 """
 Calcula la concentración total u_T para el caso de la lámina plana

 Args:
 u: Matriz de soluciones u(r, s), donde la primera dimensión representa los valores de la variable r.

 Return: Array de valores que aproxian u_T(s) en la discretización utilizada.
 """
 # Asumimos que la primera dimensión de u representa los valores de r
 N_r = u.shape[0]
 r_values = np.linspace(0, 1, N_r) # Generar r_values basado en la dimensión de u
 # Realizar la integración sobre r para obtener u_T
 return np.trapezoid(u, r_values, axis=0)

Cilindro alargado
def calculate_u_cyl(alpha, s_max, N_r, N_s):
 """
 Resuelve el sistema correspondiente al cilindro alargado por un método de diferencias finitas.

 Args:
 alpha: parámetro adimensional del modelo
 s_max: valor máximo adoptado para la variable s
 N_r: número de intervalos en la discretización equiespaciada de la variable r
 N_s: número de intervalos en la discretización equiespaciada de la variable s

 Return: una matriz N_r por N_s que aproxima la solución en la discretización utilizada
 """
 r_values = np.linspace(0, 1, N_r) # Discretización de r
 r_values = r_values[1:] # Excluir el primer valor para evitar singularidad en r=0
 N_r = N_r - 1 # Ajustar el número de puntos en r
 s_values = np.linspace(0, s_max, N_s) # Discretización de s
 dr = r_values[1] - r_values[0] # Paso en r
 ds = s_values[1] - s_values[0] # Paso en s
 delta = ds / dr ** 2 # Parámetro delta
 gamma = ds / (2 * dr) # Parámetro gamma
 A = np.eye(N_r) # Matriz identidad de tamaño N_r

 # Llenar la matriz A con los coeficientes adecuados
 for i in range(1, N_r - 1):
 A[i, i - 1: i + 2] = [gamma / r_values[i] - delta, 1 + 2 * delta, -gamma / r_values[i] - delta]

 # Condición de frontera en r = 0
 A[0, [0, 1, 2]] = [1 + 2 * gamma / r_values[0] - delta, 2 * (delta - gamma / r_values[0]), -delta]

 u_old = np.zeros(N_r) # Inicializar u_old con ceros
 u_old[-1] = dr * alpha / (1 - dr * alpha) # Condición de frontera en r = 1

 u = [u_old.copy()] # Lista para almacenar las soluciones en cada paso de s

 # Iterar sobre los pasos de s
 for _ in range(1, N_s):
 u_new = np.linalg.solve(A, u_old) # Resolver el sistema de ecuaciones
 u_new[-1] = (u_new[-2] + dr * alpha) / (1 + dr * alpha) # Actualizar la condición de frontera en r = 1
 u.append(u_new.copy()) # Almacenar la nueva solución
 u_old = u_new # Actualizar u_old para el siguiente paso

 return np.array(u).T # Devolver la matriz de soluciones transpuesta

Concentración total en Cilindro alargado
def calculate_u_cyl_T(u):
 """
 Calcula la concentración total u_T para el caso del cilindro alargado

 Args:
 u: Matriz de soluciones u(r, s), donde la primera dimensión representa los valores de la variable r.

 Return: Array de valores que aproxian u_T(s) en la discretización utilizada.
 """
 N_r = u.shape[0] # Número de puntos en r
 r_values = np.linspace(0, 1, N_r + 1)[1:] # Generar valores de r, excluyendo el primer valor
 r_v = r_values[:, np.newaxis] # Convertir r_values a una matriz columna
 u_T = 2 * np.trapezoid(u[:-1, :] * r_v[:-1], r_values[:-1], axis=0) # Calcular u_T
 return u_T

#Esfera
def calculate_u_sph(alpha,s_max,N_r,N_s):
 """
 Resuelve el sistema correspondiente a la esfera por un método de diferencias finitas.

 Args:
 alpha: parámetro adimensional del modelo
 s_max: valor máximo adoptado para la variable s
 N_r: número de intervalos en la discretización equiespaciada de la variable r
 N_s: número de intervalos en la discretización equiespaciada de la variable s

 Return: una matriz N_r por N_s que aproxima la solución en la discretización utilizada
 """
 r_values = np.linspace(0, 1, N_r)
 r_values = r_values[1:]
 N_r=N_r-1
 s_values = np.linspace(0, s_max, N_s)
 dr = r_values[1] - r_values[0]
 ds = s_values[1] - s_values[0]
 delta = ds / dr ** 2
 gamma = ds / dr
 A = np.eye(N_r)
 for i in range(1, N_r - 1):
 A[i, i - 1: i + 2] = [gamma/r_values[i]-delta, 1 + 2 * delta, -gamma/r_values[i]-delta]

 A[0,[0,1,2]] = [1+gamma/r_values[1] - delta, 2*delta-gamma/r_values[1], -delta]

 u_old = np.zeros(N_r)
 u_old[-1] = dr * alpha / (1 - dr * alpha)
 u = [u_old.copy()]

 for _ in range(1, N_s):
 u_new = np.linalg.solve(A, u_old)
 u_new[-1] = (u_new[-2] + dr * alpha)/(1+dr*alpha)
 u.append(u_new.copy())
 u_old = u_new

 return np.array(u).T

Concentración total en Esfera
def calculate_u_sph_T(u):
 """
 Calcula la concentración total u_T para el caso de la esfera

 Args:
 u: Matriz de soluciones u(r, s), donde la primera dimensión representa los valores de la variable r.

 Return: Array de valores que aproxian u_T(s) en la discretización utilizada.
 """
 N_r = u.shape[0] # Número de puntos en r
 r_values = np.linspace(0, 1, N_r + 1)[1:] # Generar valores de r, excluyendo el primer valor
 r_squared = r_values ** 2 # Calcular r al cuadrado
 r_squared = r_squared[:, np.newaxis] # Convertir r_squared a una matriz columna

 u_T = 3 * np.trapezoid(u * r_squared, r_values, axis=0) # Calcular u_T
 return u_T

Gráficos de las funciones y keyboard_arrow_down u uT

Lámina Planakeyboard_arrow_down

Discretización
s_max = 100
N_r = 500 # Número de puntos en la discretización de r
N_s = 2000 # Número de puntos en la discretización de s
r_values = np.linspace(0, 1, N_r) # Discretización de r
r_values = r_values[1:] # Excluir el primer valor para evitar singularidad en r=0
s_values = np.linspace(0, s_max, N_s) # Discretización de s

Gráficos de para valores fijos de :

Perfiles de la variación de la concentración en función de keyboard_arrow_down r

u(r, s) s

α = 15

<matplotlib.legend.Legend at 0x7dc5d0aa8ed0>

Calcula u para el valor de alpha y la discretización seleccionada
u = calculate_u_cart(15, s_max, N_r, N_s)

Elegir el número de valores temporales (s) a graficar
num_s_values = 10

Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
 plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$')

Personalizar la gráfica
plt.xlabel('r')
plt.ylabel('$u(r, s)$')
plt.title('$u(r,s)$ para diferentes valores de s. $\\alpha=15$')
plt.grid(True)

Etiquetas fuera del gráfico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de s")

α = 50

Calcula u para el valor de alpha y la discretización seleccionada
u = calculate_u_cart(50, s_max, N_r, N_s)

Elegir el número de valores temporales (s) a graficar
num_s_values = 10

<matplotlib.legend.Legend at 0x7dc59dfabc90>

Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
 plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$')

Personalizar la gráfica
plt.xlabel('r')
plt.ylabel('$u(r, s)$')
plt.title('$u(r,s)$ para diferentes valores de s. $\\alpha=50$')
plt.grid(True)

Etiquetas fuera del gráfico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de s")

Variación de la concentración total en función de la variable keyboard_arrow_down s

plt.figure(figsize=(6, 6))

alpha_values = [50, 15,5] # Valores específicos de alpha que deseas graficar

for i, alpha in enumerate(alpha_values):
 u = calculate_u_cart(alpha, s_max, N_r, N_s)
 u_T = calculate_u_cart_T(u) # Calcular u_T usando la función definida

 # Graficar u_T para cada valor de alpha
 plt.plot(s_values, u_T, label=f'$\\alpha = {alpha:.2f}$')

Personalizar la gráfica
plt.xlabel('s')
plt.ylabel('$u_T(s)$')
plt.title('Concentración Total $u_T(s)$ para diferentes valores de $\\alpha$')
plt.legend()

plt.show()

Cilindro alargadokeyboard_arrow_down

Discretización
s_max = 100
N_r = 500 # Número de puntos en la discretización de r
N_s = 500 # Número de puntos en la discretización de s
r_values = np.linspace(0, 1, N_r) # Discretización de r
r_values = r_values[1:] # Excluir el primer valor para evitar singularidad en r=0
s_values = np.linspace(0, s_max, N_s) # Discretización de s

Gráficos de para valores fijos de :

Perfiles de la variación de la concentración en función de keyboard_arrow_down r

u(r, s) s

α = 15

Calcula u para el valor de alpha y la discretización seleccionada
u = calculate_u_cyl(15, s_max, N_r, N_s)

Elegir el número de valores temporales (s) a graficar
num_s_values = 11

Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
 plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$')

Personalizar la gráfica
plt.xlabel('r')
plt.ylabel('$u(r, s)$')
plt.title('$u(r,s)$ para diferentes valores de s. $\\alpha=15$')
plt.grid(True)

Etiquetas fuera del gráfico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de s")

<matplotlib.legend.Legend at 0x7dc59defd210>

α = 50

<matplotlib.legend.Legend at 0x7dc5b465ee10>

Calcula u para el valor de alpha y la discretización seleccionada
u = calculate_u_cyl(50, s_max, N_r, N_s)

Elegir el número de valores temporales (s) a graficar
num_s_values = 11

Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
 plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$')

Personalizar la gráfica
plt.xlabel('r')
plt.ylabel('$u(r, s)$')
plt.title('$u(r,s)$ para diferentes valores de s. $\\alpha=50$')
plt.grid(True)

Etiquetas fuera del gráfico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de s")

Variación de la concentración total en función de la variable keyboard_arrow_down s

plt.figure(figsize=(6, 6))

alpha_values = [50, 15,5] # Valores específicos de alpha que deseas graficar

for i, alpha in enumerate(alpha_values):
 u = calculate_u_cyl(alpha, s_max, N_r, N_s)
 u_T = calculate_u_cyl_T(u) # Calcular u_T usando la función definida

 # Graficar u_T para cada valor de alpha
 plt.plot(s_values, u_T, label=f'$\\alpha = {alpha:.2f}$')

Personalizar la gráfica
plt.xlabel('s')
plt.ylabel('$u_T(s)$')
plt.title('Concentración Total $u_T(s)$ para diferentes valores de $\\alpha$')
plt.legend()

plt.show()

Esferakeyboard_arrow_down

Discretización
s_max = 100
N_r = 500 # Número de puntos en la discretización de r
N_s = 500 # Número de puntos en la discretización de s
r_values = np.linspace(0, 1, N_r) # Discretización de r
r_values = r_values[1:] # Excluir el primer valor para evitar singularidad en r=0
s_values = np.linspace(0, s_max, N_s) # Discretización de s

Gráficos de para valores fijos de :

Perfiles de la variación de la concentración en función de keyboard_arrow_down r

u(r, s) s

α = 15

Calcula u para el valor de alpha y la discretización seleccionada
u = calculate_u_sph(15, s_max, N_r, N_s)

Elegir el número de valores temporales (s) a graficar
num_s_values = 11

Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
 plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$')

Personalizar la gráfica
plt.xlabel('r')
plt.ylabel('$u(r, s)$')
plt.title('$u(r,s)$ para diferentes valores de s. $\\alpha=15$')
plt.grid(True)

<matplotlib.legend.Legend at 0x7dc5b43ffe10>

Etiquetas fuera del gráfico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de s")

α = 50

<matplotlib.legend.Legend at 0x7dc5b46e6e90>

Calcula u para el valor de alpha y la discretización seleccionada
u = calculate_u_sph(50, s_max, N_r, N_s)

Elegir el número de valores temporales (s) a graficar
num_s_values = 11

Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
 plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$')

Personalizar la gráfica
plt.xlabel('r')
plt.ylabel('$u(r, s)$')
plt.title('$u(r,s)$ para diferentes valores de s. $\\alpha=50$')
plt.grid(True)

Etiquetas fuera del gráfico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de s")

Variación de la concentración total en función de la variable keyboard_arrow_down s

plt.figure(figsize=(6, 6))

alpha_values = [50, 15,5] # Valores específicos de alpha

for i, alpha in enumerate(alpha_values):

p p
 u = calculate_u_sph(alpha, s_max, N_r, N_s)
 u_T = calculate_u_sph_T(u)

 # Graficar u_T para cada valor de alpha
 plt.plot(s_values, u_T, label=f'$\\alpha = {alpha:.2f}$')

Personalizar la gráfica
plt.xlabel('s')
plt.ylabel('$u_T(s)$')
plt.title('Concentración Total $u_T(s)$ para diferentes valores de $\\alpha$')
plt.legend()

