Material suplementario

Dispersion de aditivos en alimentos: un modelo de conveccion - difusidn resuelto

v

por diferencias finitas
Dima, Jimena Berndette; Ferrari, Mariano; Fiedorowicz Kowal, Martina; Mandelman, Ivan.

Se presentan en el material suplementario las funciones programadas en Python para resolver el modelo de conveccién-difusiéon propuesto

en tres geometrias regulares.

Se presentan ademas las funciones utilizadas para graficar los perfiles de concentracién y la concentracion total en cada caso.

v Sistemas adimencionales

v Lamina plana

Us = Upp parar € (0,1); s >0
u, =0 parar =0; s >0
u =a(l—u) parar=1;s>0
u=0 parar € (0,1); s=0

Concentracion total en variable adimensional:

1
ur(s) :/ u(r, s) dr.
0
v Cilindro alargado

1
Ug = ?ur+uw parar € (0,1); s >0
u=0a(l—u) parar=1;5>0
u=0 parar € (0,1); s=0

Concentracion total en variable adimensional:

1
up(s) = 2/ u(r, s)r dr.
0
v Esfera

2
Uy = ;ur—l—uw parar € (0,1); s >0
u = a(l —u) parar=1;5>0

u=0 parar € (0,1); s=0

Concentracion total en variable adimensional:

up(s) = 3‘/01 u(r, s)r? dr.

v Funciones que resuelven los sistemas anteriores aproximando u y ur

import numpy as np
import matplotlib.pyplot as plt

# Lamina plana
def calculate_u_cart(alpha, s_max, N_r, N_s):

Resuelve el sistema correspondiente a la lamina plana por un método de diferencias finitas.



Axgs:
alpha: pardmetro adimensional del modelo
s_max: valor maximo adoptado para la variable s
N_r: nimero de intervalos en la discretizacidén equiespaciada de la variable r
N_s: numero de intervalos en la discretizacién equiespaciada de la variable s

Return: una matriz N_r por N_s que aproxima la solucién en la discretizacién utilizada
r_values = np.linspace(@, 1, N_r) # Discretizacién de r

r_values = r_values[1:]

Nr=Nrxr-1

s_values = np.linspace(@, s_max, N_s) # Discretizacidén de s

dr = r_values[1] - r_values[@] # Paso de r

ds = s_values[1] - s_values[@] # Paso de s

delta = ds / dr ** 2

A = np.eye(N_r)

for i in range(1l, N_r - 1)
A[i, i -1 : i+ 2] = [-delta, 1 + 2 * delta, -delta]

u_old = np.zeros(N_r)
u_old[-1] = dr * alpha / (1 + dr * alpha)
u = [u_old.copy()]

for _ in range(1l, N_s):
u_new = np.linalg.solve(A, u_old)
u_new[@] = u_new[1l] # Condicién de frontera en r = 0@
u_new[-1] = (u_new[-2] + dr * alpha)/(l+dr*alpha) # Condicién de frontera en r =1
u.append(u_new.copy())
u_old = u_new

return np.array(u).T

# Concentracidén total en Lamina plana
def calculate_u_cart_T(u):

Calcula la concentracién total u_T para el caso de la lamina plana

Args:
u: Matriz de soluciones u(r, s), donde la primera dimensién representa los valores de la variable r.

Return: Array de valores que aproxian u_T(s) en la discretizacidén utilizada.

# Asumimos que la primera dimensién de u representa los valores de r

N_r = u.shape[0]

r_values = np.linspace(@, 1, N_r) # Generar r_values basado en la dimensién de u
# Realizar la integracién sobre r para obtener u_T

return np.trapezoid(u, r_values, axis=0)

# Cilindro alargado
def calculate_u_cyl(alpha, s_max, N_r, N_s):

Resuelve el sistema correspondiente al cilindro alargado por un método de diferencias finitas.

Args:
alpha: pardmetro adimensional del modelo
s_max: valor mdximo adoptado para la variable s
N_r: numero de intervalos en la discretizacidén equiespaciada de la variable r
N_s: nimero de intervalos en la discretizacién equiespaciada de la variable s

Return: una matriz N_r por N_s que aproxima la solucién en la discretizacién utilizada

r_values np.linspace(®, 1, N_r) # Discretizacidén de r

r_values = r_values[1:] # Excluir el primer valor para evitar singularidad en r=0
N_r = N_r - 1 # Ajustar el nimero de puntos en r

s_values = np.linspace(@, s_max, N_s) # Discretizacidén de s

dr = r_values[1] - r_values[@] # Paso en 1

ds = s_values[1] - s_values[@] # Paso en s

delta = ds / dr ** 2 # Parametro delta

gamma = ds / (2 * dr) # Pardmetro gamma

A = np.eye(N_r) # Matriz identidad de tamafio N_r

# Llenar la matriz A con los coeficientes adecuados
for i in range(1l, N_r - 1)
A[i, 1 - 1: i + 2] = [gamma / r_values[i] - delta, 1 + 2 * delta, -gamma / r_values[i] - delta]

# Condicidén de frontera en r = 0
A[@, [0, 1, 2]1] = [1 + 2 * gamma / r_values[@] - delta, 2 * (delta - gamma / r_values[@]), -deltal

u_old = np.zeros(N_r) # Inicializar u_old con ceros
u_old[-1] = dr * alpha / (1 - dr * alpha) # Condicién de frontera en r =1



u = [u_old.copy()] # Lista para almacenar las soluciones en cada paso de s

# Iterar sobre los pasos de s
for _ in range(1l, N_s):

u_new = np.linalg.solve(A, u_old) # Resolver el sistema de ecuac

u_new[-1] = (u_new[-2] + dr * alpha) / (1 + dr * alpha) # Actualizar la condicién de frontera en r

u.append(u_new.copy()) # Almacenar la nueva solucién
u_old = u_new # Actualizar u_old para el siguiente paso

return np.array(u).T # Devolver la matriz de soluciones transpuesta

# Concentracidén total en Cilindro alargado

def calculate_u_cyl _T(u):

Calcula la concentracién total u_T para el caso del cilindro alargado

Args:

u: Matriz de soluciones u(r, s), donde la primera dimensidén representa los valores de la variable r.

iones

Return: Array de valores que aproxian u_T(s) en la discretizacién utilizada.

N_r = u.shape[@] # Numero de puntos en r

r_values = np.linspace(@, 1, N_r + 1)[1:]

r_v = r_values[:, np.newaxis]
u_T = 2 * np.trapezoid(u[:-1,
return u_T

#Esfera

# Convertir r_values a una matriz colu
:] * r_v[:-1], r_values[:-1], axis=0)

def calculate_u_sph(alpha,s_max,N_r,N_s):

Resuelve el sistema correspondiente a la esfera por un método de diferencias finitas.

Axgs:

alpha: pardmetro adimensional del modelo

s_max: valor maximo adoptado para la variable s
N_r: nimero de intervalos en la discretizacién equiespaciada de la variable r
N_s: numero de intervalos en la discretizacién equiespaciada de la variable s

Return: una matriz N_r por N_s que aproxima la solucién en la discretizacién utilizada

r_values = np.linspace(@, 1, N_r)

r_values = r_values[1:]
N_r=N_x-1

s_values = np.linspace(@, s_max, N_s)

dr = r_values[1l] - r_values[0@]
ds = s_values[1] - s_values[0]

delta = ds / dr ** 2
gamma = ds / dr

A = np.eye(N_1)

for i in range(1l, N_r - 1)

Afi, 1 - 1: i + 2] = [gamma/r_values[i]-delta, 1 + 2 * delta, -gamma/r_values[i]-delta]

# Generar valores de r, excluyendo el primer valor

mna
# Calcular u_T

A[0,[0,1,2]] = [1+gamma/r_values[1l] - delta, 2*delta-gamma/r_values[1l], -delta]

u_old = np.zeros(N_r)

u_old[-1] = dr * alpha / (1 - dr * alpha)

u = [u_old.copy()]

for _ in range(1l, N_s):

u_new = np.linalg.solve(A, u_old)
u_new[-1] = (u_new[-2] + dr * alpha)/(1l+dr*alpha)

u.append(u_new.copy())
u_old = u_new

return np.array(u).T

# Concentracidén total en Esfera
def calculate_u_sph_T(u):

Calcula la concentracién total u_T para el caso de la esfera

Args:

u: Matriz de soluciones u(r, s), donde la primera dimensién representa los valores de la variable r.

Return: Array de valores que aproxian u_T(s) en la discretizacién utilizada.

N_r = u.shape[@] # Numero de puntos en r

r_values = np.linspace(@, 1, N_r + 1)[1:]

r_squared = r_values ** 2 # Calcular r al cuadrado
r_squared = r_squared[:, np.newaxis] # Convertir r_squared a una mat

# Generar valores de r, excluyendo el primer valor

riz columna

1



u_T = 3 * np.trapezoid(u * r_squared, r_values, axis=0) # Calcular u_T
return u_T

v Graficos de las funciones u y ur

v Lamina Plana

# Discretizaciodn

s_max = 100

N_r = 500 # Numero de puntos en la discretizacién de r

N_s = 2000 # Numero de puntos en la discretizacién de s

r_values = np.linspace(@, 1, N_r) # Discretizacién de r

r_values = r_values[1l:] # Excluir el primer valor para evitar singularidad en r=0
s_values = np.linspace(@, s_max, N_s) # Discretizacién de s

v Perfiles de la variacién de la concentracién en funcién de r

Graficos de u(r, s) para valores fijos de s:
a=15

# Calcula u para el valor de alpha y la discretizacién seleccionada
u = calculate_u_cart(15, s_max, N_r, N_s)

# Elegir el numero de valores temporales (s) a graficar
num_s_values = 10

# Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1l, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$")

# Personalizar la grafica

plt.xlabel('$r$")

plt.ylabel('$u(r, s)$")

plt.title('$u(r,s)$ para diferentes valores de $s$. $\\alpha=15%")
plt.grid(True)

# Etiquetas fuera del grafico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de $s$")
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a =50
# Calcula u para el valor de alpha y la discretizacién seleccionada
u = calculate_u_cart(50, s_max, N_r, N_s)

# Elegir el numero de valores temporales (s) a graficar
num_s_values = 10



# Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(l, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$")

# Personalizar la grafica

plt.xlabel('$x$")

plt.ylabel('$u(r, s)$"')

plt.title('$u(xr,s)$ para diferentes valores de $s$. $\\alpha=50%")
plt.grid(True)

# Etiquetas fuera del grafico
plt.legend(loc="center left', bbox_to_anchor=(1, ©.5), title="Valores de $s$")
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v Variacion de la concentracion total en funcion de la variable s

plt.figure(figsize=(6, 6))
alpha_values = [50, 15,5] # Valores especificos de alpha que deseas graficar

for i, alpha in enumerate(alpha_values):
u = calculate_u_cart(alpha, s_max, N_r, N_s)
u_T = calculate_u_cart_T(u) # Calcular u_T usando la funcién definida
# Graficar u_T para cada valor de alpha
plt.plot(s_values, u_T, label=f'$\\alpha = {alpha:.2f}$")

# Personalizar la grafica

plt.xlabel('$s$")

plt.ylabel('$u_T(s)$")

plt.title('Concentracién Total $u_T(s)$ para diferentes valores de $\\alpha$')
plt.legend()

plt.show()
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v Cilindro alargado

# Discretizacion

s_max = 100

N_r = 500 # Numero de puntos en la discretizacidén de r

N_s = 500 # Numero de puntos en la discretizacidén de s

r_values = np.linspace(@, 1, N_r) # Discretizacién de r

r_values = r_values[1:] # Excluir el primer valor para evitar singularidad en r=0
s_values = np.linspace(@, s_max, N_s) # Discretizacién de s

v Perfiles de la variacion de la concentraciéon en funcién de r

Graficos de u(r, s) para valores fijos de s:
a=15

# Calcula u para el valor de alpha y la discretizacién seleccionada
u = calculate_u_cyl(15, s_max, N_r, N_s)

# Elegir el numero de valores temporales (s) a graficar
num_s_values = 11

# Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1l, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$")

# Personalizar la grafica

plt.xlabel('$xr$")

plt.ylabel('$u(r, s)$")

plt.title('$u(r,s)$ para diferentes valores de $s$. $\\alpha=15%")
plt.grid(True)

# Etiquetas fuera del grafico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de $s$")
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a =50

# Calcula u para el valor de alpha y la discretizacién seleccionada
u = calculate_u_cyl(50, s_max, N_r, N_s)

# Elegir el numero de valores temporales (s) a graficar
num_s_values = 11

# Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(1l, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$")

# Personalizar la grafica

plt.xlabel('$x$")

plt.ylabel('$u(r, s)$")

plt.title('$u(r,s)$ para diferentes valores de $s$. $\\alpha=50%")
plt.grid(True)

# Etiquetas fuera del grafico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de $s$")
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v Variacion de la concentracion total en funcion de la variable s

plt.figure(figsize=(6, 6))
alpha_values = [50, 15,5] # Valores especificos de alpha que deseas graficar
for i, alpha in enumerate(alpha_values):

u = calculate_u_cyl(alpha, s_max, N_r, N_s)
u_T = calculate_u_cyl T(u) # Calcular u_T usando la funcién definida



# Graficar u_T para cada valor de alpha
plt.plot(s_values, u_T, label=f'$\\alpha = {alpha:.2f}$")

# Personalizar la grafica

plt.xlabel('$s$")

plt.ylabel('$u_T(s)$")

plt.title('Concentracién Total $u_T(s)$ para diferentes valores de $\\alpha$')
plt.legend()

plt.show()
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v Esfera

# Discretizacion

s_max = 100

N_r = 500 # Numero de puntos en la discretizacidén de r

N_s = 500 # Numero de puntos en la discretizacién de s

r_values = np.linspace(@, 1, N_r) # Discretizacién de r

r_values = r_values[1l:] # Excluir el primer valor para evitar singularidad en r=0
s_values = np.linspace(@, s_max, N_s) # Discretizacién de s

v Perfiles de la variacion de la concentracion en funcion de r

Graficos de u(r, s) para valores fijos de s:
a=15

# Calcula u para el valor de alpha y la discretizacién seleccionada
u = calculate_u_sph(15, s_max, N_r, N_s)

# Elegir el numero de valores temporales (s) a graficar
num_s_values = 11

# Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(l, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
plt.plot(r_values, u[:, i], label=f'$s = {s_values[i]:.2f}$")

# Personalizar la grafica

plt.xlabel('$x$")

plt.ylabel('$u(r, s)$"')

plt.title('$u(xr,s)$ para diferentes valores de $s$. $\\alpha=15%")
plt.grid(True)



# Etiquetas fuera del grafico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de $s$")
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a =50

# Calcula u para el valor de alpha y la discretizacién seleccionada
u = calculate_u_sph(50, s_max, N_r, N_s)

# Elegir el numero de valores temporales (s) a graficar
num_s_values = 11

# Generar indices logaritmicamente espaciados
s_indices = np.unique(np.geomspace(l, N_s - 1, num_s_values, dtype=int))

plt.figure(figsize=(5, 4))
for i in s_indices:
plt.plot(xr_values, u[:, i], label=f'$s = {s_values[i]:.2f}$")

# Personalizar la grafica

plt.xlabel('$x$")

plt.ylabel('$u(r, s)$")

plt.title('$u(r,s)$ para diferentes valores de $s$. $\\alpha=50%")
plt.grid(True)

# Etiquetas fuera del grafico
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), title="Valores de $s$")
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v Variacion de la concentracion total en funcion de la variable s

plt.figure(figsize=(6, 6))
alpha_values = [50, 15,5] # Valores especificos de alpha

for i, alpha in enumerate(alpha_values):



u = célculate_u_sph(alphé, s_max, N_r, N_s)
u_T = calculate_u_sph_T(u)

# Graficar u_T para cada valor de alpha
plt.plot(s_values, u_T, label=f'$\\alpha = {alpha:.2f}$")

# Personalizar la grafica
plt.xlabel('$s$")
plt.ylabel('$u_T(s)$")

plt.title('Concentracién Total $u_T(s)$ para diferentes valores de $\\alpha$')
plt.legend()
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