Los Dispositivos Móviles y su Influencia en las Emociones del Aprendizaje de las Matemáticas
Dr. Miguel Angel López Santana
Universidad Autónoma de Nayarit
https://orcid.org/0009-0003-8223-4053
Dr. Francisco Javier Jara Ulloa
Universidad Autónoma de Nayarit
https://orcid.org/0000-0003-3917-8220
Dra. María Teresa Casillas Alcalá
Universidad Autónoma de Nayarit
https://orcid.org/0000-0002-4439-2814
Fecha de recepción: 19/04/204
Fecha de publicación: 01/07/2024
RESUMEN
Los dispositivos móviles y su influencia en las emociones para el aprendizaje de las matemáticas es un área poco explorada. La tecnología permite a los estudiantes explorar conceptos matemáticos de manera más interactiva y en forma autodidacta. Esta investigación tiene como objetivo llenar ese vacío, enfocándose en cómo los dispositivos móviles afectan este tipo de aprendizaje. Se estudia el nivel de influencia de los dispositivos móviles emocionalmente, en específico en el aprendizaje de las matemáticas en estudiantes de 2 grupos del Tecnológico Nacional de México, y 2 grupos de la Unidad Académica de Ciencias Básicas e Ingenierías de la Universidad Autónoma de Nayarit. En donde se concluyó que los dispositivos móviles tienden a tener un impacto generalmente positivo en el interés, confianza, comprensión y experiencia general en el aprendizaje de las matemáticas.
Palabras clave: Álgebra, Cronbach, Aprendizaje, Matemáticas, Muestreo, Likert.
Mobile Devices and their Influence on the Emotions of Mathematics Learning
ABSTRACT
Mobile devices and their influence on emotions for learning mathematics is an underexplored area. Technology allows students to explore mathematical concepts more interactively and self-taught. This research aims to fill that gap, focusing on how mobile devices affect this type of learning. The level of influence of mobile devices emotionally is studied, specifically in the learning of mathematics in students from 2 groups of the Tecnológico Nacional of Mexico, and 2 groups of the Academic Unit of Basic Sciences and Engineering of the Autonomous University of Nayarit. Where it was concluded that mobile devices tend to have a generally positive impact on interest, confidence, understanding and general experience in learning mathematics.
Keywords: Algebra, Cronbach, Learning, Mathematics, Sampling, Likert.
Dispositivos Móveis e sua Influência nas Emoções da Aprendizagem de Matemática
RESUMO
Os dispositivos móveis e a sua influência nas emoções na aprendizagem da matemática são uma área pouco explorada. A tecnologia permite que os alunos explorem conceitos matemáticos de forma mais interativa e autodidata. Esta investigação pretende preencher essa lacuna, centrando-se na forma como os dispositivos móveis afetam este tipo de aprendizagem. Estuda-se o nível de influência emocional dos dispositivos móveis, especificamente na aprendizagem da matemática em alunos de 2 turmas do Tecnológico Nacional do México e 2 turmas da Unidade Acadêmica de Ciências Básicas e Engenharia da Universidade Autônoma de Nayarit. Onde se concluiu que os dispositivos móveis tendem a ter um impacto geralmente positivo no interesse, na confiança, na compreensão e na experiência geral na aprendizagem da matemática.
Palavras-chave: Álgebra, Cronbach, Aprendizagem, Matemática, Amostragem, Likert
En la actualidad, el uso de dispositivos móviles se ha convertido en una herramienta muy empleada en la vida cotidiana, en la cual se encuentra inmerso en diversos ámbitos de la sociedad, esto incluye desde luego la educación. En el contexto de la educación, las matemáticas en el nivel superior representan un desafío para muchos estudiantes, quienes a menudo experimentan emociones negativas asociadas con esta disciplina o en el estudio de las ciencias. Sin embargo, los dispositivos móviles ofrecen una oportunidad única para explorar cómo pueden influir en las emociones del aprendizaje de las matemáticas en este nivel educativo. La investigación se realiza en Tepic, la capital del estado de Nayarit en México, se encuentra en una región geográficamente diversa que presenta tanto oportunidades como desafíos para la enseñanza y el aprendizaje de las ciencias exactas. Situada en un valle rodeado de montañas y con un clima subtropical, Tepic ofrece un entorno natural rico en biodiversidad y fenómenos geológicos, lo cual puede ser un recurso valioso para el estudio de las ciencias exactas.
La diversidad geográfica de Tepic incluye volcanes, ríos y una gran variedad de flora y fauna, proporcionando un laboratorio natural para el aprendizaje práctico de materias como la geología, biología y ecología. Los estudiantes pueden beneficiarse enormemente de excursiones de campo que les permitan observar directamente los procesos naturales y aplicar conceptos teóricos aprendidos en el aula. Este enfoque experimental es fundamental en la educación científica, ya que fomenta una comprensión más profunda y duradera de los principios científicos. En este caso se pretende estudiar la relación entre los dispositivos móviles y las emociones del aprendizaje de las matemáticas en el nivel superior en específico en el aprendizaje de las matemáticas en estudiantes de dos escuelas de nivel superior de la región, una de ellas es el Tecnológico Nacional de México, Instituto Tecnológico de Tepic, y otra institución es la Unidad Académica de Ciencias Básicas e Ingenierías de la Universidad Autónoma de Nayarit, México. Primero, es crucial comprender el papel que desempeñan los dispositivos móviles en la educación superior. Según Vázquez-Cano, López-Meneses y Sarasola (2020), estos dispositivos ofrecen oportunidades únicas para la enseñanza y el aprendizaje, el cual permite un acceso rápido a información, facilitando la comunicación entre estudiantes y profesores, y permitiendo la colaboración y el aprendizaje interactivo.
Sin embargo, la infraestructura educativa de Tepic enfrenta ciertos retos. Las escuelas y universidades deben contar con laboratorios bien equipados y personal docente capacitado para integrar de manera efectiva el entorno geográfico en el currículo de ciencias exactas. La disponibilidad de recursos tecnológicos y materiales didácticos modernos es crucial para complementar las experiencias de campo y permitir un aprendizaje integral. Además, el acceso a internet y tecnologías de la información puede ser desigual en diferentes áreas de Tepic, lo que afecta la calidad de la educación. En zonas más rurales, la falta de infraestructura adecuada puede limitar las oportunidades de aprendizaje avanzado en ciencias exactas. Por tanto, es esencial implementar políticas educativas que aseguren una distribución equitativa de recursos y capacitación docente en toda la región. Otro aspecto a considerar es la relevancia de la educación ambiental en el contexto de Tepic. Dado el entorno natural de la región, es vital que los programas educativos incluyan un enfoque en la sostenibilidad y la conservación del medio ambiente. Esto no solo enriquece la enseñanza de las ciencias exactas, sino que también promueve una conciencia ecológica entre los estudiantes, preparándolos para enfrentar los desafíos ambientales globales.
Respecto al uso de las tecnologías, también, existe el estudio de Nguyen y Wah (2019) destaca que los dispositivos móviles pueden fomentar la autonomía del estudiante, brindándole la posibilidad de acceder a materiales de estudio en cualquier momento y lugar, esto puede ser bueno en el aprendizaje de las matemáticas, una disciplina que requiere práctica constante. Lo interesante es conocer como las emociones juegan un papel fundamental en el proceso de aprendizaje de las matemáticas. Según Pekrun y Linnenbrink-Garcia (2014), las emociones pueden influir en la motivación, la atención, el procesamiento cognitivo y el rendimiento académico de los estudiantes. Si nos enfocamos en el contexto especifico de las matemáticas, existe estudios como el de Gunderson, Park, Maloney, Beilock y Levine (2018) en el cual han demostrado que las emociones de los estudiantes, como la ansiedad y la frustración, pueden afectar negativamente su desempeño en esta disciplina.
Pero actualmente, la relación entre los dispositivos móviles y las emociones del aprendizaje de las matemáticas en el nivel superior aún no ha sido completamente explorada. Por eso es necesario investigar cómo el uso de estos dispositivos puede influir en las emociones de los estudiantes hacia las matemáticas, ya sea mitigando la ansiedad y la frustración o generando nuevos desafíos emocionales, ya que la información que se obtenga puede ayudar a generar mejores estrategias de enseñanza aprendizaje. La integración de dispositivos móviles en la enseñanza de las matemáticas en el nivel superior ha generado una amplia gama de investigaciones sobre su impacto en el proceso educativo y, particularmente, en las emociones de los estudiantes. Estudios recientes han explorado cómo el uso de aplicaciones móviles específicas, como tutoriales interactivos, juegos educativos y plataformas de aprendizaje adaptativo, puede afectar las percepciones emocionales de los estudiantes hacia las matemáticas (Chen & Wu, 2019; Loong et al., 2020). Estas investigaciones han arrojado luz sobre cómo la gamificación, la personalización del aprendizaje y la accesibilidad a recursos en línea pueden influir en la confianza, el interés y la autoeficacia de los estudiantes en relación con las matemáticas.
Desarrollo 1
En esta era digital contemporánea, los dispositivos móviles se han convertido en herramientas presentes en nuestras vidas cotidianas, transformando radicalmente la forma en que accedemos a la información y aprendemos, lo cual esto puede presentar una alternativa favorable en la enseñanza-aprendizaje. Este cambio ha tenido un impacto significativo en diversos campos de estudio, incluida la educación matemática en el nivel superior, es por esto que uno de los aspectos cruciales es el papel de los dispositivos móviles en la motivación y el compromiso de los estudiantes con el aprendizaje de las matemáticas. Según Jiang y Liu (2020), el uso de dispositivos móviles en el aula puede mejorar la motivación intrínseca de los estudiantes al proporcionarles un entorno de aprendizaje interactivo y personalizado. Esta interactividad puede promueve una mayor participación y atención por parte de los estudiantes, lo que a su vez puede tener un impacto positivo en sus emociones hacia las matemáticas. También, los dispositivos móviles ofrecen una amplia gama de recursos educativos, como aplicaciones y plataformas en línea, que pueden adaptarse a las necesidades individuales de los estudiantes y facilitar la comprensión de conceptos matemáticos complejos. Existe un estudio de Hwang, Wu y Tsai (2019), en donde menciona que el uso de aplicaciones móviles en el aprendizaje de las matemáticas puede mejorar significativamente el rendimiento académico de los estudiantes y reducir la ansiedad asociada con esta materia. Esto sugiere que los dispositivos móviles no solo tienen el potencial de mejorar el aprendizaje de las matemáticas, sino también de influir positivamente en las emociones de los estudiantes hacia esta disciplina.
Impacto de los Dispositivos Móviles en el Aprendizaje de las Matemáticas
Ahora con el empleo de dispositivos móviles en entornos educativos ha demostrado tener un impacto positivo en el aprendizaje de las matemáticas en el nivel superior, esto según Kim y Park (2017), el uso de aplicaciones móviles específicas para la enseñanza de las matemáticas puede mejorar la comprensión de conceptos abstractos, aumentar la motivación y promover una mayor participación de los estudiantes en el proceso de aprendizaje. Además, estudios como el de Hwang, Wu y Chen (2018) destacan que los dispositivos móviles proporcionan una plataforma flexible que permite a los estudiantes acceder a recursos educativos en cualquier momento y lugar, lo que facilita la práctica autónoma y el aprendizaje personalizado.
Influencia de los Dispositivos Móviles en las Emociones del Aprendizaje
Las emociones desempeñan un papel crucial en el proceso de aprendizaje, ya que pueden afectar la motivación, la atención y la memoria de los estudiantes (Pekrun et al., 2019). En el contexto de las matemáticas, donde muchos estudiantes experimentan ansiedad y falta de confianza, es fundamental explorar cómo los dispositivos móviles pueden influir en estas emociones. Investigaciones recientes sugieren que el uso de aplicaciones móviles interactivas y juegos educativos puede generar emociones positivas, como el disfrute y la satisfacción, durante la resolución de problemas matemáticos (Chang & Shieh, 2020). Asimismo, la retroalimentación inmediata proporcionada por estas herramientas puede ayudar a reducir la ansiedad al ofrecer un entorno de aprendizaje sin presiones y errores aceptables.
Revisión teórica
¿Qué son los dispositivos móviles?; Los dispositivos móviles, también conocidos como Tabletas gráficas, teléfonos inteligentes o smartphones, han revolucionado la forma en que interactuamos con la tecnología y entre nosotros. Estos dispositivos son computadoras de bolsillo que nos permiten realizar una amplia gama de tareas, desde comunicarnos con personas de todo el mundo hasta acceder a información instantánea y entretenimiento en cualquier momento y lugar. En primer lugar, es fundamental comprender qué constituye un dispositivo móvil. Según Singh y Tripathi (2020), los dispositivos móviles son dispositivos electrónicos portátiles que ofrecen capacidades de procesamiento de datos y comunicación inalámbrica. Estos dispositivos suelen tener pantallas táctiles, sistemas operativos avanzados y acceso a una variedad de aplicaciones diseñadas para mejorar la productividad y la conectividad del usuario. Sin duda una de las características más representativas de los dispositivos móviles es su capacidad para conectarnos con el mundo accediendo a los rincones más alejados. De acuerdo a Kim (2019), los smartphones permiten acceder a Internet a través de redes móviles o Wi-Fi, lo que facilita la comunicación instantánea, el intercambio de información y el acceso a servicios en línea como el correo electrónico, cualquiera de las redes sociales y el comercio electrónico. Esta conectividad constante ha transformado la forma en que trabajamos, nos comunicamos y nos relacionamos con la información. Además de la comunicación, los dispositivos móviles también ofrecen una amplia gama de funciones y aplicaciones que mejoran nuestra productividad y entretenimiento. Según Mishra y Yadav (2018), los smartphones están equipados con una variedad de sensores, como GPS, acelerómetros y cámaras, que permiten una amplia gama de aplicaciones innovadoras, desde la navegación por satélite hasta la realidad aumentada. Estas aplicaciones no solo nos ayudan en nuestra vida diaria, sino que también ofrecen nuevas formas de aprender, trabajar y entretenernos.
Pero se debe tomar en cuenta qué, el creciente uso de dispositivos móviles también plantea desafíos en términos de seguridad y privacidad. Según Wang y Zhang (2021), la creciente cantidad de datos personales almacenados en dispositivos móviles ha aumentado la preocupación por la seguridad cibernética y la protección de la privacidad. Por eso es necesario que los usuarios comprendan los riesgos asociados con el uso de dispositivos móviles y tomen medidas para proteger su información personal y sus datos.
Los Dispositivos Móviles en la Enseñanza-Aprendizaje de las Matemáticas
Los dispositivos móviles ofrecen una amplia gama de aplicaciones y recursos que pueden facilitar el aprendizaje de las matemáticas. Estas herramientas permiten a los estudiantes acceder a ejercicios interactivos, tutoriales, videos educativos y juegos que pueden hacer que el aprendizaje sea más dinámico y atractivo. Según Bicen y Kocakoyun (2019), el uso de aplicaciones móviles en el aprendizaje de las matemáticas ha demostrado mejorar el rendimiento académico y la retención del conocimiento. Específicamente para la enseñanza-aprendizaje de las matemáticas se tiene algunas aplicaciones gratuitas disponibles en forma básica, si se quiere obtener resultados más avanzados, pues se tiene que pagar por la extensión de las aplicaciones, entre las aplicaciones que se pueden encontrar en forma gratuita en forma básica, son:
PHOTOMATH
La app gratuita que probablemente sea la más popular y más descargada en smartphones y tabletas para los alumnos. Esta aplicación permite resolver un ejercicio matemático con solo la cámara del móvil, en solo tres simples pasos: ¡Primero Abre la app, Segundo fotografía tu ejercicio y Tercero la app muestra el resultado! Además, te muestra paso a paso de manera detallada y con explicaciones la solución del ejercicio para que a la vez puedas aprender o corregir posibles errores. Puedes fotografiar problemas tanto impresos, es decir, que estén en un libro o una hoja, o escritos a mano. Incluso puedes introducir manualmente la operación que quieras que te solucione.
Imagen 1: App Photomath
(fuente: https://buscatusclases.com/wp-content/uploads/2022/05/photomath.png)
Ventajas: Es rápida y fácil de usar, para solucionar operaciones de números enteros, con fracciones, raíces y decimales, ecuaciones de todos los grados, sistemas lineales o no lineales, inecuaciones, límites, derivadas, integrales, etc.
Desventajas: No está disponible para ordenadores ya que no tiene plataforma web, es decir, solo se puede usar en móviles y tablets, además tiene la opción de paga para operaciones avanzadas.
SYMBOLAB
Esta aplicación es la alternativa perfecta disponible para dispositivos Android e iOs (Es un sistema operativo móvil desarrollado por Apple Inc.), también se puede usar en ordenadores a través de su web, además su funcionamiento es similar a la app Photomath. Con la cámara del dispositivo móvil, se puede escanear el problema matemático y obtener la solución al momento y es muy útil para corregir ejercicios.
Imagen 2: App Symbolab
(fuente: https://buscatusclases.com/wp-content/uploads/2022/05/symbolab.png)
Ventajas: Tiene ejemplos resueltos para poder practicar, además tiene su web propia, donde puedes encontrar toda la teoría ordenada por temas y una base de datos con fórmulas y propiedades matemáticas.
Desventajas: La opción detallada de los pasos en el móvil es de pago y si lo haces a través del ordenador, es decir entrando en su web, hay que registrarse y no tienes la opción de escanear el ejercicio, sino que lo has de introducir manualmente.
MICROSOFT MATH SOLVER
Esta aplicación probablemente es poco conocida, pero es muy útil. Su funcionamiento muy parecido a Photomath y Symbolab, en forma similar nos ofrece la posibilidad de resolver con el uso de la cámara del móvil o escribiendo manualmente el problema matemático, mostrando los pasos detallados. Tiene plataforma web propia y muchos recursos educativos organizados por temas. Su calculadora gráfica es muy completa lo cual nos permite resolver cualquier ejercicio que queramos.
Imagen 3: App Microsoft Math Solver
(fuente: https://buscatusclases.com/wp-content/uploads/2022/05/microsoft-math-solver.png)
Ventajas: Contiene links tutoriales de Youtube explicando ejercicios relacionados con la búsqueda deseada.
Desventajas: Algunas explicaciones de ejercicios están en inglés, pero si dominas el idioma, no tendrás ninguna dificultad o el uso del traductor.
GEOGEBRA
Es una app muy conocida para uso como calculadora gráfica y se encuentra disponible para móviles, tablets y ordenadores. Esta aplicación nos representa gráficamente cualquier función, recta, segmento, parábola, elipse, etc. que introducimos en su teclado.
Imagen 4: App GeoGebra
(fuente: https://buscatusclases.com/wp-content/uploads/2022/05/geogebra.png)
Ventajas: Tiene disponibles recursos matemáticos de geometría, estadística y probabilidad, además puedes exportar o compartir la imagen.
Desventajas: No tiene la opción de escanear una función, se introduce manualmente.
DESMOS
La aplicación GeoGebra, quizá la mejor calculadora gráfica online, muy sencilla de usar. Disponible tanto como aplicación móvil como aplicación web, esta app nos ayudará a representar gráficamente todo tipo de funciones: lineales, trigonométricas, definidas a trozos, derivadas, inversas, etc. Sólo tienes que introducir manualmente la función o funciones que quieras representar y se mostrará su representación gráfica.
Imagen 5: App Desmos
(fuente: https://buscatusclases.com/wp-content/uploads/2022/05/desmos.png)
Ventajas: Posee algunos ejemplos de funciones representadas, además si te registras tienes la opción de guardar las gráficas.
Desventajas: No tiene la opción de fotografía, sino que todo se hace manualmente.
Las Emociones Humanas:
Si vamos a analizar el cómo las emociones humanas influyen en el aprendizaje de las matemáticas en el nivel superior, primero se debe conocer qué son las emociones. ¿Qué son las emociones humanas?, estas son una compleja red de experiencias subjetivas que influyen en nuestras percepciones, pensamientos y acciones. Desde la alegría hasta la tristeza, desde el miedo hasta la ira, las emociones pintan el paisaje de nuestras vidas, dando color y profundidad a nuestras interacciones con el mundo que nos rodea. A lo largo de la historia, filósofos, psicólogos y escritores han intentado descifrar el enigma de las emociones humanas, explorando su naturaleza, origen y función. Algo fascinante de las emociones es su diversidad y variabilidad. Cada individuo experimenta y percibe las emociones de manera única, influenciado por una interacción compleja de factores biológicos, psicológicos y socioculturales, es por esto que cada persona puede generar sus propias experiencias y estas pueden ser similares, pero nunca iguales a otra. Como lo menciona el psicólogo Paul Ekman, "las emociones son los patrones distintivos de cambios en el cuerpo que corresponden a sentimientos o estados de ánimo específicos" (Ekman, 1992, p. 38). Esta forma de interpretación destaca la estrecha relación que existe entre las emociones y las sensaciones físicas, subrayando cómo nuestro cuerpo reacciona y se manifiesta en respuesta a estímulos emocionales.
Las emociones también desempeñan un papel fundamental en la forma en que nos relacionamos con los demás y con nosotros mismos. Como seres sociales, nuestras emociones actúan como un lenguaje universal que comunica nuestras necesidades, deseos y estados internos. Como afirmó el psicólogo Daniel Goleman, "las emociones son contagiosas. Todos nosotros 'captamos' las emociones de quienes nos rodean" (Goleman, 1996, p. 34). Esta característica para influir en los demás a través de nuestras expresiones emocionales señala la importancia de desarrollar habilidades emocionales para una comunicación efectiva y relaciones interpersonales saludables. Se sabe que, las emociones no siempre son fáciles de entender o gestionar. En ocasiones, pueden ser abrumadoras, llevándonos a reacciones impulsivas o irracionales. Como escribió el filósofo William James, "las emociones no provienen de la razón y, por lo tanto, no pueden disiparse por la razón" (James, 1884, p. 189). La cual muestra las emociones y su dificultad de controlarlas únicamente a través del pensamiento racional. Cuando es mejor intentar suprimir o ignorar nuestras emociones, es fundamental aprender a reconocerlas, aceptarlas y canalizarlas de manera constructiva. Entonces las emociones son parte de la experiencia humana, moldeando nuestras percepciones, decisiones y relaciones. Al explorar y comprender las emociones, podemos cultivar una mayor autoconciencia, empatía y resiliencia emocional, capacitándonos para navegar los altibajos de la vida con gracia y comprensión.
Emociones en el Aprendizaje de las Matemáticas:
Se entiende que las emociones desempeñan un papel crucial en el proceso de aprendizaje, debido a que pueden variar el nivel de motivación, la atención y la capacidad de los estudiantes para procesar y retener información. En los estudiantes el aprendizaje de las matemáticas, las emociones pueden variar desde la frustración y la ansiedad hasta la satisfacción y el disfrute. Según Pekrun y Linnenbrink-Garcia (2012), las emociones positivas, están asociadas con un mayor compromiso y rendimiento académico en matemáticas, mientras que las emociones negativas, como el miedo y la frustración, pueden obstaculizar el aprendizaje.
Influencia de los Dispositivos Móviles en las Emociones del Aprendizaje:
El uso de dispositivos móviles en la clase puede tener un impacto significativo en las emociones de los estudiantes en el proceso de aprendizaje de las matemáticas. Por un lado, el acceso a recursos interactivos y personalizados puede generar emociones positivas, como el interés y la satisfacción, al hacer que el aprendizaje sea más atractivo y relevante para los estudiantes (Chen et al., 2018). Por otro lado, el uso inadecuado o excesivo de dispositivos móviles también puede provocar distracción y ansiedad, especialmente si los estudiantes se enfrentan a dificultades en la comprensión de los conceptos matemáticos (Goh et al., 2019).
Existen algunas teorías que hacen referencia a la motivación en el uso de los dispositivos móviles en el aula, como:
Teoría de la Autodeterminación: En la cual postula que la motivación intrínseca se ve afectada por tres necesidades psicológicas básicas: la competencia, la autonomía y la relación. En el contexto de los dispositivos móviles y las matemáticas, los estudiantes pueden experimentar una mayor autonomía al utilizar aplicaciones de aprendizaje personalizado, lo que podría aumentar su motivación intrínseca hacia la materia (Deci & Ryan, 2000).
Teoría del Flujo: Es analizada por Csikszentmihalyi, esta teoría describe un estado mental en el que una persona está completamente inmersa en una actividad, disfrutándola al máximo y perdiendo la noción del tiempo. La utilización de aplicaciones móviles bien diseñadas para el aprendizaje de las matemáticas podría facilitar la experiencia de flujo en los estudiantes, mejorando su compromiso y satisfacción con la materia (Csikszentmihalyi, 1990).
Teoría de la Carga Cognitiva: Aquí se analiza la capacidad cognitiva de un individuo la cual es limitada, y el aprendizaje se ve afectado por la carga cognitiva impuesta por una tarea. Los dispositivos móviles pueden ser tanto una fuente de carga cognitiva adicional, si distraen al estudiante, como una herramienta para reducir la carga cognitiva, si se utilizan para proporcionar ejemplos interactivos o explicaciones claras (Sweller, 1994).
Ahora la interacción entre los dispositivos móviles y las emociones de los estudiantes en el aprendizaje de las matemáticas es un área de investigación poco estudiada. Estudios recientes han examinado cómo el uso de aplicaciones móviles específicas puede modular las emociones de los estudiantes durante la resolución de problemas matemáticos (Li & Ma, 2020). Además, se ha observado que el diseño de las aplicaciones móviles puede influir en la experiencia emocional de los estudiantes, afectando su motivación y compromiso con el aprendizaje de las matemáticas (Chang et al., 2018).
Métodos
Para esta investigación para su metodología, es necesario recopilar datos significativos y fiables. Una de las técnicas más empleadas es el muestreo, un proceso esencial en la investigación que permite obtener información representativa de una población más grande. Combinado con una herramienta como la escala de Likert para la aplicación de encuesta, ofrece una manera eficaz de medir actitudes, percepciones y opiniones de los individuos, permitiendo el análisis cuantitativo de datos en distintos campos de estudio. El muestreo, para una investigación, es un proceso crucial que permite la extracción de datos representativos de una población más a analizar.
Una de las técnicas de muestreo más fundamentales es el muestreo aleatorio simple (MAS), donde cada elemento de la población tiene la misma probabilidad de ser seleccionado en la muestra. Como señalan Thompson y Seber (1996), "el mas es ampliamente utilizado debido a su simplicidad y facilidad de implementación, lo que lo convierte en una opción atractiva para muchos investigadores" (p. 45). Esta técnica es especialmente útil cuando se necesita una representación imparcial de la población y se dispone de recursos limitados.
Otra técnica que existe, es el muestreo estratificado, que implica dividir la población en subgrupos homogéneos o estratos y luego tomar muestras aleatorias de cada estrato proporcional a su tamaño. Según Cochran (1977), "el muestreo estratificado es eficaz para garantizar una representación adecuada de subgrupos específicos dentro de la población, lo que permite análisis más detallados y precisos" (p. 112). Esta técnica es útil cuando se sabe que ciertos subgrupos tienen características distintivas.
Se tiene también el muestreo por conglomerados, donde la población se divide en grupos o conglomerados, y se seleccionan algunos de estos conglomerados para su inclusión en la muestra. Lohr (2010) señala que "el muestreo por conglomerados es eficiente en términos de costos y logísticamente conveniente cuando la población está naturalmente agrupada en unidades fácilmente identificables" (p. 73). Es útil en situaciones donde no es factible o práctico enumerar todos los elementos de la población, como en encuestas a nivel nacional o regional.
Ahora en cuanto al muestreo se refiere a la selección de una muestra, un subconjunto representativo de una población más amplia, con el propósito de hacer inferencias sobre dicha población (Babbie, 2016), y se usa para maximizar la precisión y la validez de los resultados obtenidos, minimizando el sesgo y los costos asociados con la recopilación de datos de toda la población. Existen diferentes tipos de muestreo, como el muestreo aleatorio simple, estratificado, por conglomerados o sistemático, cada uno con sus ventajas y limitaciones.
El tipo de muestra para esta investigación es de tipo intencionada, debido a que son los grupos que se tienen asignados y además permite evaluar lo cualitativo, aquí se hace la selección de forma no aleatoria a individuos con la característica de poseer una riqueza de información en torno a la investigación “La selección de los entrevistados se fundamenta en el conocimiento y aptitud de éstos para informar sobre un tema específico” (Anduiza et al., 1999). Entonces existe límites que proporciona la muestra, respecto a la población total de estudio, de acuerdo a los estándares utilizados por la investigación cuantitativa (Castro Nogueira, 2002). A pesar de sus limitaciones, el muestreo intencionado sigue siendo una herramienta valiosa en la investigación científica, especialmente cuando se busca explorar fenómenos complejos, contextos específicos o casos poco comunes. Como señalan Berg y Lune (2012), "el muestreo intencionado es una estrategia adecuada cuando se busca obtener información detallada y profunda sobre grupos específicos o casos que son fundamentales para el estudio" (p. 87).
Se tomaron como muestra el total de los grupos asignados a impartir clases (4 grupos), en el cual son 30 alumnos de Cálculo Integral (CI), de la carrera de ingeniería en gestión empresarial (IGE) y 40 alumnos de Cálculo Vectorial (CV) de la carrera de ingeniería industrial (IND) del Tecnológico Nacional del México (TNM), Instituto Tecnológico de Tepic (ITTepic). También fueron 19 alumnos de Segundo semestre, 15 alumnos de cuarto semestre, de la Unidad Académica de Ciencias Básicas e Ingenierías (UACBI), de la Universidad Autónoma de Nayarit (UAN), para un total de 104 estudiantes encuestados.
La Escala de Likert, fue desarrollada por el psicólogo Rensis Likert en 1932, y desde entonces ha sido una herramienta fundamental en la investigación social y psicológica durante décadas. Esta escala proporciona un método para medir actitudes, opiniones y percepciones de personas sobre diferentes temas, desde la satisfacción laboral hasta la opinión pública sobre cuestiones políticas o sociales. Esta escala es muy popular y esto se debe a su simplicidad, versatilidad y capacidad para capturar matices en las respuestas que se proporcionan.
La Escala de Likert consiste en una serie de afirmaciones o enunciados sobre un tema particular, a los cuales los encuestados responden indicando su grado de acuerdo o desacuerdo en una escala de opciones que va desde "Totalmente en desacuerdo" hasta "Totalmente de acuerdo", aunque estas afirmaciones a veces pueden cambiar. Generalmente, estas respuestas se codifican numéricamente, y por esto facilita el análisis estadístico y la interpretación de los datos recopilados. Como señala el autor Likert (1932), estas escalas permiten una medición muy confiable ya que proporciona una estructura clara para la recopilación y el análisis de datos. También menciona Smith (2010), la Escala de Likert es especialmente útil en situaciones donde se requiere medir constructos abstractos, ya que ofrece una forma estandarizada de capturar y cuantificar esta información.
Objetivo
Conocer el nivel de influencia en las emociones del aprendizaje en el estudiante de matemáticas en el nivel superior.
Hipótesis
Los dispositivos móviles tienen una influencia positiva en el estudiante, hacia el aprendizaje de las matemáticas. Para desarrollar la investigación se empleará el siguiente orden:
Ø Elaboración y aplicación de encuesta pertinente a la investigación.
Ø Aplicación de instrumentos a los estudiantes seleccionados.
Ø Validación de la encuesta con el coeficiente alfa de Cronbach.
Ø Análisis de resultados y conclusiones.
Encuesta
En la siguiente encuesta, se elaboró en base a la escala Rensis Likert con opción de cinco respuestas, para responder a la hipótesis planteada en base al objetivo, las respuestas se responden en forma anónima por parte del estudiante:
Texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra, texto de muestra
Validez y Confiabilidad
La validez y la confiabilidad son dos aspectos fundamentales en una investigación de tipo científica, debido a que es necesario la credibilidad y la precisión de los resultados obtenidos. La validez se refiere a la capacidad de una medida o un instrumento para evaluar o medir lo que realmente pretende medir, mientras que la confiabilidad se relaciona con la consistencia y estabilidad de los resultados obtenidos a través de diferentes aplicaciones del mismo instrumento o método. Por eso se considera tanto la validez como la confiabilidad al diseñar y llevar en una investigación, ya que la falta de estas características puede poner en duda los resultados y, en última instancia, la validez de las conclusiones extraídas. Como señalan Bolarinwa y Dairo (2020), "La validez y la confiabilidad son elementos esenciales en la investigación científica, ya que aseguran la precisión y la consistencia de los resultados, proporcionando una base sólida para la toma de decisiones y la formulación de teorías" (p. 45).
El coeficiente alfa de Cronbach, desarrollado por Lee Cronbach en 1951, se ha convertido en una herramienta fundamental en la evaluación de la consistencia interna o fiabilidad de una escala de medición. Como señala Clark y Watson (1995), "El coeficiente alfa de Cronbach es la medida más utilizada de la confiabilidad de una escala de prueba, ya que es fácil de calcular e interpretar" (p. 104). Aquí se puede ver la utilidad del coeficiente alfa de Cronbach en la evaluación de la fiabilidad de las escalas de medición. Este coeficiente evalúa hasta qué punto los ítems en una escala de medición están correlacionados entre sí. Es decir, mide la coherencia interna de la escala, indicando qué tan bien los ítems miden el mismo constructo subyacente. El procedimiento de cálculo se hace considerando todas las combinaciones posibles de ítems dentro de la escala, proporcionando un valor que oscila entre 0 y 1. Un coeficiente cercano a 1 sugiere una alta consistencia interna, lo que indica que los ítems de la escala están altamente correlacionados y, por lo tanto, miden de manera confiable el mismo constructo. Por lo tanto, se sugieren las recomendaciones siguientes para evaluar los coeficientes de alfa de Cronbach:
Ø Coeficiente alfa > 0.9 es excelente
Ø Coeficiente alfa > 0.8 es bueno
Ø Coeficiente alfa > 0.7 es aceptable
Ø Coeficiente alfa > 0.6 es cuestionable
Ø Coeficiente alfa > 0.5 es pobre
Ø Coeficiente alfa < 0.5 es inaceptable
Fórmula para el coeficiente Alfa de Cronbach
k = número de ítems
(σi)²=
varianza de cada ítem
(σx)²= varianza de la cuestionario total
Aplicaciones didácticas, desarrollo tecnológico, hallazgos principales
Una vez elaborada y aplicada la encuesta, en los grupos de Segundo y Cuarto Semestre de UACBI y CV, CI del ITTepic, se analizó con el coeficiente alfa de Cronbach el cuál arrojó los siguientes resultados:
Imagen 6: Coeficiente de Alfa Cronbach
Grupo Cálculo Vectorial (ITTepic).
Imagen 7: Coeficiente de Alfa Cronbach
Grupo Cálculo Integral (ITTepic).
Imagen 8: Coeficiente de Alfa Cronbach
Grupo Segundo Semestre (UAN).
Imagen 9: Coeficiente de Alfa Cronbach
Grupo Cuarto Semestre (UAN).
Los resultados de los coeficientes de Alfa de Cronbach de cada grupo fueron: Cálculo Vectorial 4B = 0.8136; Cálculo Integral 12A = 0.8519; Segundo Semestre IM = 0.8361; Cuarto Semestre IM = 0.8755. De acuerdo a (George y Mallery, 2003, p. 231), los valores de confianza del instrumento aplicado, están entre 0.8 y 0.9, el cual se considera como bueno a excelente. Respecto a las respuestas que arrojan los estudiantes, los 104 encuestados manifiestan:
1.- ¿En qué medida crees que el uso de dispositivos móviles afecta positivamente tu interés en el aprendizaje de las matemáticas?
No afecta en absoluto = 5; Afecta ligeramente = 26; Neutral = 33; Afecta bastante =30; Afecta significativamente= 10
2.- ¿Cómo crees que el uso de dispositivos móviles influye en tu confianza para resolver problemas matemáticos?
Desmotiva completamente = 2; Desmotiva en cierta medida = 17; Neutral = 31; Motiva en cierta medida = 46; Motiva completamente = 8
3.- ¿En qué medida sientes que el uso excesivo de dispositivos móviles afecta tu concentración durante las clases de matemáticas?
No afecta en absoluto = 9; Afecta ligeramente = 25; Neutral = 26; Afecta bastante = 32; Afecta significativamente = 12
4.- ¿Cómo percibes el impacto de los dispositivos móviles en tu capacidad para retener la información aprendida en matemáticas?
Afecta negativamente = 6; Afecta en cierta medida = 28; Neutral = 41; Afecta positivamente = 28; Afecta muy positivamente = 1
5.- ¿Consideras que el uso de aplicaciones y recursos en dispositivos móviles mejora tu comprensión de los conceptos matemáticos?
No mejora en absoluto = 1; Mejora ligeramente = 15; Neutral = 23; Mejora considerablemente = 50; Mejora significativamente = 15
6.- ¿Cómo afecta el uso de dispositivos móviles a tu motivación para participar activamente en las actividades relacionadas con las matemáticas?
Desmotiva completamente = 2; Desmotiva en cierta medida = 18; Neutral = 50; Motiva en cierta medida = 31; Motiva completamente = 3
7.- ¿En qué medida crees que el acceso constante a dispositivos móviles influye en tu ansiedad durante las evaluaciones de matemáticas?
Aumenta significativamente la ansiedad = 5; Aumenta en cierta medida la ansiedad = 31; Neutral = 35; Disminuye en cierta medida la ansiedad = 27; Disminuye significativamente la ansiedad = 6
8.- ¿Consideras que el uso de dispositivos móviles en el aprendizaje de las matemáticas mejora tu habilidad para resolver problemas de manera creativa?
No mejora en absoluto = 8; Mejora ligeramente = 19; Neutral = 20; Mejora considerablemente = 48; Mejora significativamente = 9
9.- ¿Cómo crees que el uso de dispositivos móviles afecta tu satisfacción general con tu desempeño en matemáticas?
Disminuye significativamente la satisfacción = 3; Disminuye en cierta medida la satisfacción = 13; Neutral = 48; Aumenta en cierta medida la satisfacción = 34; Aumenta significativamente la satisfacción = 6
10.- En general, ¿cómo evaluarías la influencia de los dispositivos móviles en tu experiencia de aprendizaje de matemáticas?
Muy negativa = 1; Negativa = 5; Neutral = 20; Positiva = 69; Muy positiva = 9
Se puede describir los resultados como:
Para el interés en el aprendizaje de las matemáticas: La mayoría de los encuestados siente que el uso de dispositivos móviles tiene un impacto positivo en su interés por las matemáticas, con 30 personas indicando que afecta bastante y 10 que afecta significativamente. Sin embargo, 33 personas son neutrales y 31 sienten que afecta solo ligeramente o nada en absoluto.
Para la confianza para resolver problemas matemáticos: Los dispositivos móviles tienden a motivar a los estudiantes en cierta medida (46) y completamente (8), aunque 31 son neutrales y un grupo más pequeño siente cierta desmotivación (17) o completa (2).
Para la concentración durante las clases: Un número significativo de estudiantes encuentra que los dispositivos móviles afectan bastante (32) o significativamente (12) su concentración, aunque 26 son neutrales y 25 sienten un impacto ligero.
Para la retención de información: La percepción general es neutral (41) sobre el impacto en la retención de información, con igual número de personas sintiendo un impacto positivo y negativo (28 cada uno). Solo 1 persona percibe un impacto muy positivo y 6 un impacto muy negativo.
Para la comprensión de conceptos matemáticos: Los dispositivos móviles mejoran considerablemente la comprensión (50) y significativamente (15), mientras que 23 son neutrales y pocos sienten mejoras ligeras (15) o ninguna (1).
Para la motivación para participar activamente: La mayoría es neutral (50), aunque hay una tendencia hacia una motivación en cierta medida (31) o completamente (3). Menos personas se sienten desmotivadas (18 en cierta medida y 2 completamente).
Para la ansiedad durante evaluaciones: La mayoría es neutral (35) sobre la ansiedad, aunque hay un grupo significativo que siente un aumento (31 en cierta medida y 5 significativamente) y otro que siente una disminución (27 en cierta medida y 6 significativamente).
Para la habilidad para resolver problemas de manera creativa: Muchos creen que los dispositivos móviles mejoran considerablemente (48) y significativamente (9) esta habilidad, con una minoría sintiendo mejoras ligeras (19) o ninguna (8).
Para la satisfacción general con el desempeño: La mayoría es neutral (48) en cuanto a su satisfacción general, con una tendencia hacia el aumento en cierta medida (34) y significativamente (6). Menos personas sienten una disminución (13 en cierta medida y 3 significativamente).
Para la experiencia de aprendizaje en general: La influencia de los dispositivos móviles es vista mayormente como positiva (69) o muy positiva (9), con una minoría neutral (20) y muy pocos sintiendo una influencia negativa (5) o muy negativa (1).
En resumen de estos resultados, los dispositivos móviles tienden a tener un impacto generalmente positivo en el interés, confianza, comprensión y experiencia general en el aprendizaje de las matemáticas, aunque también pueden afectar negativamente la concentración y aumentar la ansiedad en algunos estudiantes.
Conclusiones
Para la pregunta 1, respecto al interés en el aprendizaje de las matemáticas: La mayoría de los encuestados (63%) sienten que el uso de dispositivos móviles tiene una influencia positiva o bastante positiva en su interés por aprender matemáticas, lo que sugiere que estos dispositivos pueden ser herramientas motivadoras para el estudio de esta materia.
Para la pregunta 2, respecto a la confianza para resolver problemas matemáticos: La gran mayoría de los encuestados (77%) perciben que el uso de dispositivos móviles tiene al menos cierta influencia positiva en su confianza para resolver problemas matemáticos, lo que indica que estos dispositivos pueden ser útiles para aumentar la autoconfianza en el ámbito de las matemáticas.
Para la pregunta 3, respecto a la concentración durante las clases de matemáticas: Un número considerable de encuestados (44%) reporta que el uso excesivo de dispositivos móviles afecta su concentración durante las clases de matemáticas, lo que sugiere que el acceso constante a estos dispositivos puede representar una distracción en el entorno educativo.
Para la pregunta 4, respecto a la retención de información aprendida en matemáticas: La percepción respecto al impacto de los dispositivos móviles en la retención de información es bastante equilibrada, con un 56% de los encuestados indicando que afecta positivamente o en cierta medida a su capacidad para retener la información aprendida.
Para la pregunta 5, respecto a la comprensión de los conceptos matemáticos: La mayoría de los encuestados (65%) considera que el uso de aplicaciones y recursos en dispositivos móviles mejora considerablemente o significativamente su comprensión de los conceptos matemáticos, lo que sugiere que estos recursos digitales son percibidos como beneficiosos para el aprendizaje.
Para la pregunta 6, respecto a la motivación para participar activamente en actividades matemáticas: La mayoría de los encuestados (84%) se muestra neutral o siente una motivación en cierta medida para participar activamente en actividades relacionadas con las matemáticas cuando se utilizan dispositivos móviles, lo que sugiere que estos dispositivos no tienen un impacto significativamente negativo en la motivación del estudiante.
Para la pregunta 7, respecto a la ansiedad durante las evaluaciones de matemáticas: La percepción sobre la influencia del acceso constante a dispositivos móviles en la ansiedad durante las evaluaciones de matemáticas está bastante equilibrada, con un 38% de los encuestados indicando que aumenta la ansiedad en cierta medida, mientras que un 33% siente que la disminuye en cierta medida.
Para la pregunta 8, respecto a la habilidad para resolver problemas de manera creativa: La mayoría de los encuestados (57%) percibe que el uso de dispositivos móviles mejora considerablemente o significativamente su habilidad para resolver problemas de manera creativa en el ámbito de las matemáticas.
Para la pregunta 9, respecto a la satisfacción general con el desempeño en matemáticas: La percepción sobre el impacto del uso de dispositivos móviles en la satisfacción general con el desempeño en matemáticas es bastante equilibrada, con un 40% de los encuestados indicando que aumenta en cierta medida o significativamente su satisfacción, y un 16% reportando una disminución en cierta medida o significativamente.
Para la pregunta 10, respecto a la evaluación general de la influencia de los dispositivos móviles en el aprendizaje de matemáticas: La mayoría de los encuestados (78%) evalúa positivamente la influencia de los dispositivos móviles en su experiencia de aprendizaje de matemáticas, con un 69% considerando que dicha influencia es positiva o muy positiva.
Basado en estos resultados, parece que, en general, los dispositivos móviles tienen una influencia positiva en el aprendizaje de las matemáticas según la percepción de los encuestados, por lo que se puede decir que se cumple el objetivo y la hipótesis de la investigación. Sin embargo, hay algunos aspectos, como la concentración durante las clases y la ansiedad durante las evaluaciones, que podrían necesitar una consideración adicional.
Discusiones
Por ejemplo, Jo Boaler es una educadora y autora conocida por su trabajo en la enseñanza de las matemáticas. Su libro "Mathematical Mindsets: Unleashing Students' Potential through Creative Math, Inspiring Messages and Innovative Teaching" aborda la importancia de desarrollar una mentalidad matemática positiva y cómo los dispositivos móviles pueden ser utilizados para este fin.
También Cathy L. Seeley es autora de varios libros sobre la enseñanza de las matemáticas, incluyendo "Smarter Than We Think: More Messages About Math, Teaching, and Learning in the 21st Century". Sus obras exploran diferentes enfoques pedagógicos, incluyendo el uso de tecnología, y podrían ofrecer perspectivas relevantes para tu estudio.
También Keith Devlin es un matemático y autor prolífico que ha escrito extensamente sobre la educación matemática y la tecnología. Su libro "Mathematics Education for a New Era: Video Games as a Medium for Learning" explora cómo los videojuegos y la tecnología pueden ser herramientas efectivas para enseñar matemáticas, lo cual podría tener aplicaciones similares a los dispositivos móviles.
También Dan Meyer es un exprofesor de matemáticas convertido en defensor de la educación matemática innovadora. Su trabajo se centra en hacer que las matemáticas sean más accesibles y significativas para los estudiantes a través de enfoques como el uso de tecnología y problemas del mundo real. Sus conferencias y blog podrían proporcionar ideas valiosas sobre el tema.
También Salman Khan es el fundador de Khan Academy, una plataforma en línea que ofrece recursos educativos gratuitos, incluyendo lecciones de matemáticas. Sus escritos y charlas sobre el papel de la tecnología en la educación podrían ser relevantes para entender cómo los dispositivos móviles pueden ser aprovechados para mejorar el aprendizaje de las matemáticas.
Estos autores y sus obras proporcionan una información importante para explorar el tema del impacto de los dispositivos móviles en el aprendizaje de las matemáticas.
Referencias consultadas
Anduiza Perea, E., I. Crespo y M. Méndez Lago (1999), Metodología de la ciencia política, Madrid, Cuadernos Metodológicos, 28.
Babbie, E. (2016). The Basics of Social Research. Cengage Learning.
Berg, B. L., & Lune, H. (2012). Qualitative research methods for the social sciences. Pearson Education.
Bolarinwa, O. A., & Dairo, M. D. (2020). Validity and reliability in research. En O. A. Bolarinwa (Ed.), Research Methodology in the Medical and Health Sciences (pp. 45-61). Springer.
Castro Nogueira, M.A. (2002). "La imagen de la investigación cualitativa en la investigación de mercados", Política y Sociedad, 39 (1).
Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. Psychological Assessment, 7(3), 309-319.
Cochran, W. G. (1977). Sampling techniques (3rd ed.). Wiley.
Chang, C. C., & Shieh, S. W. (2020). Examining the Effect of Mobile Learning Applications on College Students' Mathematics Achievement and Learning Emotions. International Journal of Mobile Learning and Organisation, 14(2), 133-151.
Chang, M., Chou, C. Y., & Chen, Y. H. (2018). Emotional and cognitive impacts on mathematics learning achievements: The mobile application usage. Computers in Human Behavior, 80, 345-353.
Chen, S., Lu, J., Lin, J., & Chen, Y. (2018). The effect of mobile learning on students’ learning outcomes and satisfaction. Journal of Computer Assisted Learning, 34(3), 260-268.
Chen, J., & Wu, S. (2019). Mobile application in mathematics learning for senior high school students. International Journal of Emerging Technologies in Learning (iJET), 14(3), 63-71.
Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. Harper & Row.
Deci, E. L., & Ryan, R. M. (2000). The" what" and" why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268.
Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-4), 169-200.
George, D. y Mallery, P.
(2003). SPSS for Windows step by step: A Simple Guide and
Reference. 11.0 Update (4.ª ed.). Boston: Allyn & Bacon.
Goh, D. H. L., Ang, R. P., & Iglesias, A. M. (2019). Smartphone usage, sleep, and the fear of missing out among university students. Mobile Media & Communication, 7(1), 100-119.
Goleman, D. (1996). Inteligencia emocional. Kairós.
Gunderson, E. A., Park, D., Maloney, E. A., Beilock, S. L., & Levine, S. C. (2018). Reciprocal relations among motivational frameworks, math anxiety, and math achievement in early elementary school. Journal of Cognition and Development, 19(1), 21-46. DOI: 10.1080/15248372.2017.1418401
Hwang, G. J., Wu, P. H., & Chen, C. C. (2018). An online game approach for improving students' learning performance in web-based problem-solving activities. Computers & Education, 120, 20-36.
Hwang, G. J., Wu, P. H., & Tsai, C. C. (2019). An analysis of research trends in mobile learning in mathematics education: A systematic review of articles published in selected journals from 2000 to 2018. Computers & Education, 138, 124-136.
Jiang, S., & Liu, D. (2020). Mobile Learning: Characteristics, Approaches, and Implications. Educational Technology & Society, 23(3), 16-25.
Kim, D., & Park, S. (2017). A meta-analysis of the effects of mobile technology on student mathematics achievement. Educational Review, 69(5), 524-541.
Kim, J. (2019). The influence of smartphones on human behavior: A review of research. International Journal of Human-Computer Interaction, 35(9), 804-819. doi:10.1080/10447318.2019.1578989
Li, X., & Ma, X. (2020). Exploring the relationship between app usage and emotional experiences in mathematics learning. Computers & Education, 150, 103839.
Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22(140), 5–55.
Lohr, S. L. (2010). Sampling: Design and analysis. Cengage Learning.
Mishra, P., & Yadav, P. (2018). Smartphones: A review on technologies, markets and security. Journal of King Saud University-Computer and Information Sciences, 30(3), 291-304. doi:10.1016/j.jksuci.2016.07.001
Nguyen, T., & Wah, C. T. (2019). The use of mobile learning in higher education: A systematic review. Computers & Education, 128, 199-213. DOI: 10.1016/j.compedu.2018.09.011
Pekrun, R., & Linnenbrink-Garcia, L. (2012). Academic emotions and student engagement. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 259-282). Springer.
James, W. (1884). What is an emotion? Mind, 9(34), 188-205.
Pekrun, R., & Linnenbrink-Garcia, L. (2014). International handbook of emotions in education. Routledge.
Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2019). Achievement emotions and academic performance: Longitudinal models of reciprocal effects. Child Development, 90(4), 1569-1584.
Rosen, L. D., Lim, A. F., & Carrier, L. M. (2011). The Media and Technology Usage and Attitudes Scale: An empirical investigation. Computers in Human Behavior, 27(1), 480-489.
Singh, A., & Tripathi, A. (2020). A comprehensive review on smartphone technology. Materials Today: Proceedings, 21, 1032-1038. doi:10.1016/j.matpr.2019.11.084
Smith, J. K. (2010). The role of Likert scales in measuring attitudes. Journal of Social Sciences, 5(2), 310–318.
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295-312.
Thompson, S. K., & Seber, G. A. F. (1996). Adaptive sampling. Wiley.
Vázquez-Cano, E., López-Meneses, E., & Sarasola, J. L. (2020). Enhancing Teaching and Learning Through Mobile Learning: A Systematic Review. Journal of Educational Computing Research, 58(2), 269-303. DOI: 10.1177/0735633120911996
Wang, G., & Zhang, X. (2021). Privacy and security issues in smartphone usage: A comprehensive literature review. Computers & Security, 106, 102259. doi:10.1016/j.cose.2021.102259